THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Problem Set 3

(iii)

(iv)

- 1. Draw the following subsets of \mathbb{R}^2 .
 - (a) $D = \{(x, y) : 0 \le x \le y\};$

(b)
$$D = \{(x, y) : x - y > 0\};$$

- (c) $D = \{(x, y) : xy \ge 0\};$
- (d) $D = \{(x, y) : |x| + |y| < 1\}.$

(Hint: Write down the equation |x| + |y| = 1 explicitly in every quadrant.)

2. Describe the following subsets of \mathbb{R}^2 .

(a)
$$D = \{(r, \theta) : 1 < r < 2\};$$

(b)
$$D = \{(r, \theta) : 0 \le r \le 3, 0 \le \theta \le \pi\}.$$

- 3. Match the following polar equations and curves.
 - (a) $r = \cos 2\theta$ for $0 \le \theta \le 2\pi$; (b) $r = \sin 2\theta$ for $0 \le \theta \le 2\pi$; (c) $r = e^{-\theta/2}$ for $0 \le \theta \le 2\pi$; (d) $r = \frac{1 - \cos \theta}{2}$ for $0 \le \theta \le 2\pi$. (i)

-1 0

- 4. Let $S = \{(x, 0) \in \mathbb{R}^2 : x \in \mathbb{R}\}$. Show that
 - (a) $Int(S) = \phi;$
 - (b) $\partial S = S;$
 - (c) $\operatorname{Ext}(S) = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{R}, y \neq 0\}.$
- 5. Let $S = \{\frac{1}{n} : n \in \mathbb{Z}^+\}$ be a subset of \mathbb{R} . Write down $\operatorname{Int}(S)$ and ∂S .
- 6. Let $S = \{(x, y) \in \mathbb{R}^2 : |x| \ge 1\}$ be a subset of \mathbb{R}^2 . Show that S is not path connected.
- 7. Let $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ be a subset of \mathbb{R}^2 . Show that S is a compact set.
- 8. Let $S = \{(e^t \cos t, e^t \sin t) \in \mathbb{R}^2 : t \in \mathbb{R}\}$ be a subset of \mathbb{R}^2 . Prove that
 - (a) S is unbounded;
 - (b) $\mathbf{0} = (0, 0)$ is a boundary point of S.